GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

PROPOSED WORK

6th SEM ETC SUBJECT- Th.2 CONTROL SYSTEMS & COMPONENT

Name of Faculty- ER. SATYABRATA TRIPATHY

SL NO.	TOPICS	NO OF	PLANNING DATES	REMARKS
CHAPTER		PERIODS		
		ASSIGNED		
		BY SCTE&VT		
1	Fundamental of Control System		10/3/2022	
	1.1 Classification of Control system	05	То	
	1.2 Open loop system & Closed loop system and		17/03/2022	
	its comparison			
	1.3 Effects of Feed back			
	1.4 Standard test Signals(Step, Ramp, Parabolic,			
	Impulse Functions)			
	1.5 Servomechanism			
	1.6 Regulators (Regulating systems)			
2	Transfer Functions	08	21/03/2022	
	2.1 Transfer Function of a system & Impulse		То	
	response,		30/03/2022	
	2.2 Properties, Advantages & Disadvantages of			
	Transfer Function			
	2.3 Poles & Zeroes of transfer Function			
	2.4 Representation of poles & Zero on the s-			
	plane			
	2.5 Simple problems of transfer function of			
	network			

3	Control system Components & mathematical modelling of physical System 3.1 Components of Control System 3.2 Potentiometer, Synchros, Diode modulator & demodulator, 3.3 DC motors, AC Servomotors 3.4 Modelling of Electrical Systems(R, L, C, Analogous systems)	05	31/03/2022 To 08/04/2022	
4	 Block Diagram & Signal Flow Graphs(SFG) 4.1 Definition of Basic Elements of a Block Diagram 4.2 Canonical Form of Closed loop Systems 4.3 Rules for Block diagram Reduction 4.4 Procedure for of Reduction of Block Diagram 4.5 Simple Problem for equivalent transfer function 4.6 Basic Definition in SFG & properties 4.7 Mason's Gain formula 4.8 Steps foe solving Signal flow Graph 4.9 Simple problems in Signal flow graph for network 	08	11/04/2022 To 22/04/2022	
5	Time Domain Analysis of Control Systems 5.1 Definition of Time, Stability, steady-state response, accuracy, transient accuracy, In- sensitivity and robustness. 5.2 System Time Response 5.3 Analysis of Steady State Error 5.4 Types of Input & Steady state Error(Step ,Ramp, Parabolic) 5.5 Parameters of first order system & second- order systems 5.6 Derivation of time response Specification (Delay time, Rise time, Peak time,Setting time,Peak over shoot)	08	25/04/2022 To 05/05/2022	

6	FeedbackCharacteristics of Control Systems 6.1 Effect of parameter variation in Open loop System & Closed loop Systems 6.2 Introduction to Basic control Action& Basic modes of feedback control: proportional, integral and derivative 6.3 Effect of feedback on overall gain, Stability 6.4 Realisation of Controllers(P, PI,PD,PID) with OPAMP	06	06/05/2022 To 17/05/2022	
7	 Stability concept& Root locus Method 7.1 Effect of location of poles on stability 7.2 RouthHurwitz stability criterion. 7.3 Steps for Root locus method 7.4 Root locus method of design(Simple problem) 	08	18/05/2022 To 30/05/2022	
8	Frequency-response analysis&Bode Plot 8.1 Frequencyresponse,Relationship between time & frequency response 8.2 Methods of Frequency response 8.3 Polar plots & steps for polar plot 8.4 Bodes plot & steps for Bode plots 8.5 Stability in frequency domain, Gain Margin& Phase margin 8.6 Nyquist plots. Nyquiststability criterion. 8.7 Simple problems as above	07	31/05/2022 To 08/06/2022	
9	State variable Analysis 9.1 Concepts of state, state variable, state model, 9.2 state modelsfor linear continuous time functions(Simple)	05	09/06//2022 To 17/06/2022	

HOD Electronics & TC. Engg. Gandhi School of Engg. Berhampur (Gm.)

HOD